
DeCAB: Debiased Semi-supervised
Learning for Imbalanced Open-Set Data

Xiaolin Huang1, Mengke Li2, Yang Lu1(B), and Hanzi Wang1

1 Fujian Key Laboratory of Sensing and Computing for Smart City, School of
Informatics, Xiamen University, Xiamen, China

luyang@xmu.edu.cn
2 Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ),

Shenzhen, China

Abstract. Semi-supervised learning (SSL) has received significant
attention due to its ability to use limited labeled data and various unla-
beled data to train models with high generalization performance. How-
ever, the assumption of a balanced class distribution in traditional SSL
approaches limits a wide range of real applications, where the training
data exhibits long-tailed distributions. As a consequence, the model is
biased towards head classes and disregards tail classes, thereby leading
to severe class-aware bias. Additionally, since the unlabeled data may
contain out-of-distribution (OOD) samples without manual filtering, the
model will be inclined to assign OOD samples to non-tail classes with
high confidence, which further overwhelms the tail classes. To alleviate
this class-aware bias, we propose an end-to-end semi-supervised method
Debias C lass-Aware B ias (DeCAB). DeCAB introduces positive-pair
scores for contrastive learning instead of positive-negative pairs based on
unreliable pseudo-labels, avoiding false negative pairs negatively impacts
the feature space. At the same time, DeCAB utilizes class-aware thresh-
olds to select more tail samples and selective sample reweighting for fea-
ture learning, preventing OOD samples from being misclassified as head
classes and accelerating the convergence speed of the model. Experimen-
tal results demonstrate that DeCAB is robust in various semi-supervised
benchmarks and achieves state-of-the-art performance. Our code is tem-
porarily available at https://github.com/xlhuang132/decab.
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1 Introduction

Deep supervised learning models have attracted significant interest from both
industrial and academia owing to their exceptional performance. However, this
outstanding performance is mainly attributed to the abundance of human-
annotated data, which can be relatively expensive to obtain [8,9,15]. As a solu-
tion, semi-supervised learning (SSL) has emerged as a viable method for lever-
aging limited labeled data and copious amounts of unlabeled data to achieve
models with high generalization performance [1,12,17,19,28].

In the standard SSL paradigm, the assumption is made that the distribution
of target data is balanced across all classes, with an equal number of labeled and
unlabeled samples for each class. However, it is noteworthy that the class distri-
bution of naturally collected data may potentially exhibit a long-tailed charac-
teristic [24]. In situations where the labeled data is imbalanced, the performance
of conventional SSL methods can be adversely affected as the unlabeled data is
also likely to be imbalanced. The imbalanced nature of unlabeled data primarily
enhances the performance of head classes, while simultaneously exacerbating the
performance degradation of the tail classes. This phenomenon is referred to as
class-aware bias, which is a significant challenge in semi-supervised learning. As a
result, researchers have shown a growing interest in developing imbalance-robust
SSL models [6,14,21] to mitigate the effect of this bias.

In addition to the challenge of imbalanced data in SSL, another problem is
the existence of out-of-distribution (OOD) samples in the unlabeled data [7].
Without label information and manual filtering, the unlabeled data may have
a high probability of containing OOD samples that do not belong to the tar-
get distribution. Common SSL methods will treat OOD samples in the same
manner as in-distribution (ID) samples, resulting in introducing noisy samples
during training. To address this problem, several open-set SSL methods have
been proposed [2,7,23]. To mitigate the negative impact of OOD data in SSL, a
common strategy is to identify and then filter out or reduce the weight of these
samples [7,26]. However, these methods tend to classify unlabeled tail samples as
OOD data [20] under long-tailed scenarios, further exacerbating the class-aware
bias and diminishing performance. Thus, developing robust SSL methods that
can handle both class imbalance and OOD data is crucial for achieving high
generalization performance in practical scenarios.

This paper thereby investigates the problem of imbalanced SSL with OOD
data, which is a more practical and general scenario in real-world applications.
The long-tail distribution commonly leads to the erroneous classification of OOD
samples as head samples, consequently intensifying the long-tail problem and
perpetuating a detrimental loop. To alleviate this issue, we propose an end-to-end
semi-supervised method named Debias C lass-Aware B ias (DeCAB). DeCAB
leverages contrastive learning to mitigate the class-aware bias by introducing
positive-pair scores to replace positive-negative pairs based on unreliable pseudo-
labels, thereby avoiding the detrimental impact of false negative pairs on the
model. In addition, DeCAB utilizes class-aware thresholds and selective sample
reweighting to emphasize feature learning of unconfident unlabeled data.
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Our main contributions can be summarized as follows:

– We study a novel problem of SSL on imbalanced open-set data and reveal the
fact that the OOD samples exacerbate the long-tail problem in existing SSL
methods.

– We propose a simple but effective semi-supervised method DeCAB to tackle
more realistic scenarios, by evaluating the feature learning requirements of
samples and sample pairs to facilitate feature training.

– DeCAB shows superior performance compared with various state-of-the-art
SSL methods on more realistic scenarios, improving the performance of the
tail classes while maintaining the performance of the head classes.

2 Related Work

2.1 General SSL Methods

General semi-supervised learning methods can be divided into three categories:
pseudo-label-based methods [12,22], consistency regularization-based methods
[10,18], and hybrid methods that combine the two [1,16,17]. Specifically, pseudo-
label-based semi-supervised methods [12] use the self-training strategy to train
the model with labeled data, then pseudo-labels unlabeled data for further train-
ing. Consistency regularization-based methods [10,18] encourage the model to
output consistent results for the same input data with different forms of augmen-
tation [3,4]. Hybrid methods [1,17] combine pseudo-label-based and consistency
regularization-based methods to further improve performance. However, these
methods both assume that the target data distribution is balanced and there
are no OOD samples in unlabeled data. In more realistic scenarios, data often
has two characteristics: 1) ID data follows a natural long-tailed distribution,
and 2) unlabeled data may contain OOD data. These characteristics make exist-
ing methods vulnerable to distribution shifts and noisy data, thereby reducing
performance. Therefore, further research and development of semi-supervised
learning are needed to address the challenges in real-world scenarios.

2.2 Imbalanced SSL Methods

Significant progress has been made in developing imbalanced semi-supervised
methods to address the first data characteristic. CReST [21] identifies more
accurate tail samples and then performs probability sampling biased towards tail
classes, leading to a significant improvement in tail class performance. DASO [14]
combines similarity-based semantic pseudo-labels with linear classifier pseudo-
labels in a self-adaptive manner, and utilizes semantic alignment loss to establish
balanced feature representations, reducing biased predictions from the classifier.
CoSSL [6] designs a tail class feature enhancement module to alleviate the unbal-
ance problem.
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2.3 Open-Set SSL Methods

To address the second data characteristic, open-set SSL has been proposed,
which allows the model to identify and reject OOD data, thereby enhancing
its robustness and performance on unseen data. OpenMatch [16] introduces the
OVA classifier and proposes a soft consistency regularization loss to improve
the smoothness of the ova classifier relative to the input transformation. There
are currently many SSL methods resorting to contrastive learning to deal with
open-set data. For example, CCSSL [23] uses class-aware contrastive learning
to enhance the SSL model’s ability to handle OOD samples, making the model
more robust.

Fig. 1. Overview of the proposed DeCAB. Unlabeled data is filtered through class-
aware thresholds to obtain pseudo-labels, and the selected samples undergo feature
learning needs evaluation. Meanwhile, for each sample pair, positive-pair scores are
computed to conduct weighted contrastive learning.

3 Proposed Method

To address the issue of class-aware bias, we propose Debias Class-Aware Bias
(DeCAB), which is an end-to-end semi-supervised method that incorporates
contrastive information. It consists of three core components, that is, class-
aware threshold, selective sample reweighting, and positive-pair reweighting,
with positive-pair reweighting being the core part. The overall framework of
DeCAB is shown in Fig. 1.
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3.1 Problem Setting and Notations

In a setting of SSL, we have labeled data DL and unlabeled data DU . Each
sample xl

i in the labeled data DL = {(xl
i, y

l
i)}Ni=1 is associated with a label

yl
i ∈ {1, ..., C}. C is the total number of known classes. N =

∑C
i=1 Ni is the total

number of labeled data and Ni is the number of samples in class i. We assume
the classes are imbalanced and sorted in non-ascending order, i.e., Ni ≥ Nj for
i < j. The imbalance factor of a dataset is measured by the imbalance factor
IF = N1/NC . Unlabeled data DU = {(xu

i )}Mi=1 contains M samples without
annotation. We assume that unlabeled data consists of both ID data DI and
OOD data DO, i.e., DU = DI ∪ DO. The samples in DI follow the same class
distribution as DL, and therefore IF is the same for both DL and DI . Samples
in DO belong to classes other than the known C classes. For unlabeled data,
we use one weak augmentation (a(xu)) and two strong augmentations (A1(xu),
A2(xu)). We aim to learn a model to effectively learn DL and DU to generalize
well under a class-balanced test criterion.

3.2 Class-Aware Threshold

For unlabeled data, we compute the corresponding consistent loss as FixMatch
[17]. The class-aware bias can lead to lower confidence of samples in the tail
classes, resulting in a few tail class samples being selected if using a uniform
high threshold for filtering. Therefore, we set different thresholds for each class
based on sample size to filter more lower-confidence tail samples. The threshold
formula is as follows:

τc = 0.5 + Nc/N1 × (τ0 − 0.5), (1)

where τ0 denotes base threshold, and c ∈ {1, 2, 3, . . . , C}. For selected data, we
compute the predicted class distribution of the weakly augmented version a(xu

i )
of the unlabeled data point xu

i : qi = f(a(xu
i )), and use ŷi = arg max(qi) as its

pseudo-label. Then, we train the model to produce predicted class distribution
q̃ = f(A1(xu

i )) of its strongly augmented [4] version A1(xu
i ) and constrain it to

be consistent with the pseudo-labels ŷ by the following loss item:

Lu =
1

μB

µB∑

i=1

1(max(qi) > τŷi
)H(ŷi, f(A1(xu

i ))), (2)

where τŷi
is the threshold related to class ŷi, μ is a hyper-parameter determin-

ing the relative ratio between the mini-batch size of labeled data, and that of
unlabeled data, B is the batch size of mini-batch.

By using this mechanism, more tail-class samples are selected explicitly.
Moreover, as is shown in Fig. 3, more OOD samples tended to be classified as
non-head classes, implicitly mitigating the problem of exacerbated class percep-
tion bias due to OOD data. Therefore, the class-aware threshold can alleviate
class-aware bias in both explicit and implicit ways.
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3.3 Selective Sample Reweighting

For the samples that are filtered by the class-aware threshold, we think that the
potential value of each sample in feature learning is not the same. In SSL meth-
ods, typically the same weight is assigned for feature learning on each sample.
However, in situations with severe class-aware bias, the model may excessively
prioritize learning confident head class samples and ignore unconfident tail class
samples, resulting in low efficiency in feature learning. To overcome this problem,
we utilize a sample reweighting mechanism that emphasizes the feature learning
of unconfident samples. Specifically, the weight for feature contrastive learning
of sample i is calculated as:

si = 1(max(qi) > τŷi
)(1 − max(qi)). (3)

This mechanism, in combination with the class-aware threshold, can make the
model focus more on the feature learning of less confident tail-class samples in
the early stage of training, thus accelerating the convergence speed of the model.

Fig. 2. A schematic shows how positive-pair scores work. The class-aware threshold
tends to classify OOD samples as tail classes, and by using positive-pair scores, it pulls
tail classes away from similar head classes while correcting misclassified tail samples.

3.4 Positive-Pair Reweighting

Class-aware contrastive learning approaches [13,27] have demonstrated remark-
able performance in supervised learning tasks. However, in the context of imbal-
anced semi-supervised learning with OOD data, unreliable pseudo-labels can
introduce false positive and false negative pairs for class-aware contrastive
learning, potentially undermining the effectiveness of semantic feature learn-
ing. Therefore, we introduce positive-pair scores to address this issue, and Fig. 2
shows a schematic of how it works. We propose that the feature learning require-
ments of each sample pair may potentially differ, particularly in the semi-
supervised scenario investigated in this paper. For sample pairs with consistent
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pseudo-labels but dissimilar features and sample pairs with inconsistent pseudo-
labels but similar features, we argue they have more learning value, because the
former larger feature differences contain more learnable information, and the
latter may be potential positive sample pairs. Such a mechanism can avoid the
negative impact of false negative pairs on the model.

Specifically, given a sample pair xu
i and xu

j , the positive-pair score is calcu-
lated as follows:

pij =
{

1 − Mp
ij · sim(vi,vj), if ŷi = ŷj

1 + Mn
ij · sim(vi,vj), otherwise , (4)

where v = θ(a(x)) is the high-dimension feature of the weakly augmented version
of x extracted by the feature extractor θ, sim(·, ·) is cosine similarity compu-
tation function, ŷi and ŷj denote the pseudo-labels of xu

i and xu
j respectively.

Mp
ij and Mn

ij represent the positive-pair mask and negative-pair mask generated
through pseudo-labeling (Pos. Mask and Neg. Mask in Fig. 2). If ŷi = ŷj , Mp

ij is
set to 1, otherwise, 0, and Mn

ij follows the opposite logic.
Thus, for a given sample xu

i , we calculate the contrastive learning loss of its
strongly augmented views by the following formula:

Lci =
1

∑
j �=i pij

2µB∑

j=1,j �=i

pij log
exp(zi · zj/T )

∑2µB
k=1,k �=i exp(zi · zk/T )

, (5)

where T is the temperature scaling factor, z is the low-dimension feature pro-
jected by g after extracted from θ, and z = g(θ(A1(x)) or z = g(θ(A2(x)). In a
mini-batch, we get the contrastive learning loss as follows:

Lc =
1

2μB

2µB∑

i=1

siLci , (6)

where si is the corresponding sample weight obtained from its weak augmenta-
tion by Eq. (3). Although this mechanism has no explicit negative pairs, it does
not pose a significant risk of feature collapse. This is because it is combined with
the class-aware threshold and sample reweighting mechanisms, where the fea-
ture learning intensity is reduced for highly confident samples. During the early
stage of training, DeCAB prioritizes the learning of features from less confident
tail samples while mitigating the impact of false negative pairs by employing
positive-pair scores. In the later stages of training, the model assigns increasingly
high confidence to samples, leading to a gradual weakening of the corresponding
feature learning, reducing the risk of feature collapse.

3.5 Overall Training Objective

For the labeled data, we adopt the cross-entropy loss to utilize supervised infor-
mation by the following:

Lx =
1
B

B∑

i=1

l(yi, f(xi)), (7)
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where l(·, ·) is the common cross-entropy loss. The overall training objective
function is as follows:

Ltotal = Lx + λuLu + λcLc, (8)

where λu and λc are hyper-parameters, indicating the weight of each loss item.

4 Experimental Results

4.1 Experimental Settings

We compare DeCAB with several related SSL methods including general SSL
methods FixMatch [17], MixMatch [1], OpenMatch [16], and imbalanced SSL
method CReST [21] and DASO [14].

Imbalanced Dataset with OOD Data. The data used in the experiments
consists of three subsets for the purpose of training, validation, and testing.
CIFAR-10/100 [11] are used as ID datasets, which are commonly adopted
in the SSL literature [17]. We denote N1 and M1 as the number of head class
samples in labeled data and unlabeled ID data, Ni = (IF )− i−1

C−1 ·N1 and the same
for Mi, while N1 = 1, 500, M1 = 3, 000 for CIFAR-10, N1 = 150, M1 = 300 for
CIFAR-100. The testing sets of Tiny ImageNet (TIN) [5] and LSUN [25] are
used as the OOD dataset. We mix these two OOD datasets into the unlabeled
ID data and train the model on the mixed dataset.

Implementation Details. We employ Wide ResNet-28-2 for CIFAR-10 and
Wide ResNet-28-8 for CIFAR-100 as backbone architecture, respectively. The
standard training is performed for a total of 250,000 iterations, and validation
is conducted every 500 iterations. The labeled data batch size is set to 64 for
CIFAR-10, and 16 for CIFAR-100, while the batch size for unlabeled data is
twice that, with μ set to 2. τ0 in Eq. (1) is set to 0.95 for all experiments. The
temperature scaling factor T in Lc is set to 0.007. λu and λc in Eq. (8) are set to
1.0 and 0.2 respectively for all experiments. We utilize the SGD optimizer with
a basic learning rate of 0.03, momentum of 0.9, and weight decay of 1e-4. For
experimental reproducibility, all experiments fix the random seed to 7.

Evaluation Criteria. In all experiments, the average top-1 accuracy (%) of each
class is used for performance evaluation [17]. Additionally, we split the categories
of the ID dataset into three groups (Head, Medium, and Tail) according to the
class size, with the number of categories per group {3, 3, 4}, and {30, 35, 35}
for CIFAR-10 and CIFAR-100, respectively.

4.2 Numerical Comparison

Experiments on the CIFAR-10 Dataset. We conduct a comparative anal-
ysis of model performance across different settings of CIFAR-10 with two OOD
datasets (TIN and LSUN). As presented in Table 1, DeCAB exhibits remarkable
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Table 1. Comparisons of group average accuracy with SSL methods on CIFAR-10
with two different OOD datasets (TIN and LSUN). The best results are shown in bold
and the second-best ones are underlined.

Method CIFAR-10-LT (IF = 100, TIN) CIFAR-10-LT (IF = 100, LSUN)

Head Medium Tail Avg. Acc Head Medium Tail Avg. Acc

General SSL Methods

FixMatch 91.70 77.10 51.70 71.32 94.20 73.17 52.33 71.14

MixMatch 92.63 66.50 43.72 65.23 91.40 66.13 39.95 63.24

OpenMatch 92.80 70.53 40.42 65.17 91.77 64.37 41.87 63.59

Imbalanced SSL Methods

CReST 92.13 72.97 51.35 70.07 91.57 70.07 49.98 68.48

DASO 91.67 76.47 57.67 73.51 92.83 72.17 56.10 71.94

DeCAB (Ours) 94.10 74.03 62.42 75.41 88.87 74.30 60.60 73.19

Table 2. Comparisons with SSL methods on CIFAR-100-LT under two different set-
tings with OOD datasets (TIN and LSUN). The best results are shown in bold and
the second-best ones are underlined.

Method CIFAR-100-LT (IF = 100, TIN) CIFAR-100-LT (IF = 100, LSUN)

Head Medium Tail Avg. Acc. Head Medium Tail Avg. Acc

General SSL Methods

FixMatch 67.13 36.69 6.37 35.21 66.97 39.03 5.89 35.81

MixMatch 61.20 32.14 5.77 31.63 60.20 29.94 6.63 30.86

OpenMatch 65.53 31.03 6.00 32.62 65.77 31.60 5.03 32.55

Imbalanced SSL Methods

CReST 59.60 30.17 5.97 30.53 61.57 32.40 6.09 31.94

DASO 71.70 36.83 7.06 36.87 71.13 36.94 7.29 36.82

DeCAB (Ours) 66.33 40.71 7.17 36.66 68.23 38.46 9.40 37.22

performance and surpasses other methods in overall performance. Specifically,
DeCAB outperforms MixMatch and OpenMatch by nearly 10% in overall accu-
racy when subjected to TIN or LSUN as OOD data. In the case of CIFAR-10-LT
(IF=100, TIN), it surpasses FixMatch by almost 5%, CReST by 4%, and DASO
by 2% in overall accuracy. In the group average accuracy, DeCAB outperforms
MixMatch and OpenMatch by 20%, FixMatch and CReST by 10%, and DASO
by approximately 4% in tail classes. From the results presented in the table, we
can see that DeCAB achieves a more robust performance than other methods
and is more friendly to non-head classes, particularly the tail classes.

Experiments on the CIFAR-100 Dataset. The experimental results on
CIFAR-100 are represented on Table 2. It can be seen that DeCAB shows bet-
ter performance on medium and tail classes compared to other methods, while
there is a slight decrease in performance on head classes compared with Fix-
Match, which we think is acceptable. In the case of CIFAR-100-LT (IF=100,
LSUN), DeCAB exhibits superior performance over FixMatch by 3.51%, Mix-
Match by 2.77%, OpenMatch by 4.37%, CReST by 3.31%, and DASO by 2.11%
on the tail class. In the case of CIFAR-100-LT (IF=100, TIN), DeCAB is still
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more friendly to non-head classes, exhibiting a competitive advantage in terms
of overall performance.

Fig. 3. Comparison of different methods on the CIFAR-100-LT(IF=100, TIN) dataset
in terms of the number of OOD misclassification with high confidence (0.95). FixMatch-
CAT is a variation of the FixMatch algorithm that utilizes class-aware thresholds.

4.3 Analysis on Impact of OOD Data

In order to understand the role of OOD in the process of training, Fig. 3 depicts
a comparison of various methods on the CIFAR-100-LT (IF=100, TIN) dataset
in the number of OOD misclassification with high confidence (above 0.95).
FixMatch-CAT is a variation of the FixMatch algorithm that utilizes class-aware
thresholds. As shown in the figure, OpenMatch, CReST, and FixMatch tend to
misclassify OOD samples as non-tail classes, and MixMatch and DASO demon-
strate robustness to OOD data and avoid high-confidence misclassification, while
FixMatch-CAT and DeCAB prefer to misclassify OOD data as tail classes. It is
obvious that the utilization of class-aware thresholds tends to misclassify OOD
data into non-head classes with high confidence, which implicitly mitigates the
exacerbation of the class-aware bias caused by OOD data. In addition, although
MixMatch and DASO did not misclassify OOD samples into ID classes with high
confidence, their performance on tail classes is still inferior to that of DeCAB.
This observation highlights that the OOD data in DeCAB serves as a beneficial
source of information.
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Table 3. Results of ablation experiments on CIFAR-10-LT under the setting of IF =
100 with Tiny ImageNet as OOD data. CAT, SSR, and PPR denote class-aware thresh-
old, selective sample reweighting, and positive-pair reweighting, respectively. Bold val-
ues are the best and underlined values come next.

ID CAT SSR PPR Head Medium Tail Acc.(%)

0 No contrastive loss 91.70 77.10 51.70 71.32

1 Class-aware contrastive loss 94.17 71.43 55.85 72.02

2 � – – 90.77 68.30 65.45 73.90

3 – � – 92.37 72.77 53.28 70.85

4 – – � 93.17 73.37 55.53 72.17

5 � � – 91.60 74.77 53.92 71.48

6 � – � 91.20 72.10 58.45 72.37

7 � � � 94.10 74.03 62.42 75.41

4.4 Ablation Experiments

We present ablation experiments on three major components of DeCAB, namely
class-aware threshold (CAT), selective sample reweighting (SSR), and positive-
pair reweighting (PPR). The results are presented in Table 3. Experiment ID-0
refers to the base model FixMatch and Experiment ID-1 utilizes class-aware
contrastive loss with pseudo-labels, where the model performs best on the head
group but poor on the tail group. The results of Experiment ID-2, Exper-
iment ID-3 and Experiment ID-4 demonstrate that individually employing
each module fails to yield significant performance improvements to the model.
Comparing the results of Experiments ID-5, ID-6, and ID-7, it is appar-
ent that PPR contributes the most to the model’s performance improvement in
DeCAB. However, solely relying on PPR may not be sufficient as the model’s per-
formance is still suboptimal. The overall results of ablation experiments reveal
that the individual components of DeCAB do not independently result in a
notable improvement in model performance. However, when integrated into a
cohesive framework, the three modules effectively tackle the difficulties posed by
imbalanced semi-supervised learning with OOD data.

5 Conclusion

In this paper, we proposed an end-to-end method DeCAB to alleviate seri-
ous class-aware bias under an imbalanced open-set scenario. DeCAB introduces
positive-pair scores instead of positive-negative pairs in contrastive learning to
avoid the detrimental effect of unreliable pseudo-labels. Moreover, by integrating
class-aware thresholds, selective sample reweighting, and positive-pair scores, the
model can focus on learning features of less confident tail class samples in the early
stage and gradually reduce sample feature learning in later stages to avoid feature
collapse, thereby improving the performance of tail classes and enhancing general-
ization performance. Overall, our method provides a simple but effective approach
to address the challenge of feature learning in a semi-supervised environment and
has the potential to advance state-of-the-art techniques in various machine learn-
ing tasks.
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Appendix

A Analysis of the Effect of OOD Data to SSL Methods

To reveal the fact that the OOD samples exacerbate the long-tail problem in
existing SSL methods, we conduct a quick experiment. In detail, we consider a
scenario in which the labeled data is characterized by a long-tailed distribution,
with a small number of classes containing a disproportionate number of samples,
while the vast majority of classes have a limited number of samples. In addition,
the unlabeled data comprises both ID and OOD samples. The unlabeled ID
samples follow the same class distribution and a similar long-tailed distribution
to the labeled data, while the OOD samples do not belong to any of the ID
classes. We conduct a quick experiment to demonstrate that the performance of
existing SSL methods deteriorates when confronted with OOD data. To evaluate
the model performance under various scenarios, we manipulate the imbalanced
factor as well as the inclusion of OOD samples to simulate different settings.
Figure 4 compares the confusion matrices of SSL methods on imbalanced training
data with and without OOD data. The ID data uses the training set of CIFAR-
100 with an imbalance factor of 100, while OOD data uses the testing set of Tiny
ImageNet (TIN). It can be seen from the figure that the long-tailed problem leads
to performance degradation on the tail class because many tail class samples are
misclassified as a head class. The presence of OOD samples exacerbates the
long-tailes problem for existing SSL methods.

Fig. 4. Confusion matrices of SSL methods on the testing set of CIFAR-10 under two
scenarios. The training set of CIFAR-10 is utilized as the labeled and unlabeled ID
data with an imbalance factor of 100, and the testing set of Tiny ImageNet (TIN) is
used as OOD data. (a) shows the case without OOD data, while (b) shows the case
with OOD data.
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B Algorithm Flowchart

The algorithm of DeCAB is shown in Algorithm 1.

Algorithm 1. The Proposed DeCAB Algorithm
Input: Labeled data DL, unlabeled data DU , feature extractor θ, classifier φ, projector

g, number of epochs E, number of iterations per epoch I and learning rate η.
Output: Feature extractor θ, classifier φ;
1: Initialize θ, φ and projector g;
2: for each epoch t = 1, . . . , E do
3: for each iteration i = 1, 2, . . . , I do
4: S ← samplereweighting(X, θ, φ); // Obtain the selective sample weight

by Eq. (3);
5: W ← pairreweighting(X, θ); // Obtain the posi- tive-pair score of sample

pairs by Eq. (4);
6: Compute Ltotal by Eq. (8) with S and W ;
7: Update θ, φ, g by Ltotal and η;
8: end for
9: end for

10: return θ, φ.

C Visualized Comparison

In order to evaluate the learning of the model on the feature space, we per-
form a visualized comparative analysis of the test set features extracted from
the backbone of the model obtained by each method. Figure 5 shows the t-SNE
visualization of feature space about the testing set of CIFAR-10, where the model
is trained on CIFAR-10-LT (IF=100, TIN). In the figure, the black circle circles
the space of the easily confused head and tail classes. The feature space that is
learned by other methods typically shows an aggregation of similar head and tail
classes, with a significant proportion of misclassified tail classes located in the
middle of the black circles. In contrast, DeCAB exhibits a much clearer separa-
tion between head and tail classes in the feature space, resulting in fewer samples
being misclassified in the middle. These results illustrate that our method can
obtain a better feature space.
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Fig. 5. The t-SNE visualization of feature space of CIFAR-10-LT test set, trained on
CIFAR-10-LT with IF=100 and Tiny ImageNet as OOD data. The black circle circles
the easily confused head and tail samples.
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