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Compact Neural Network via Stacking Hybrid Units
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Abstract—As an effective tool for network compression, pruning
techniques have been widely used to reduce the large number of
parameters in deep neural networks (NNs). Nevertheless, unstruc-
tured pruning has the limitation of dealing with the sparse and
irregular weights. By contrast, structured pruning can help elim-
inate this drawback but it requires complex criteria to determine
which components to be pruned. Therefore, this paper presents a
new method termed BUnit-Net, which directly constructs compact
NNs by stacking designed basic units, without requiring additional
judgement criteria anymore. Given the basic units of various ar-
chitectures, they are combined and stacked systematically to build
up compact NNs which involve fewer weight parameters due to the
independence among the units. In this way, BUnit-Net can achieve
the same compression effect as unstructured pruning while the
weight tensors can still remain regular and dense. We formulate
BUnit-Net in diverse popular backbones in comparison with the
state-of-the-art pruning methods on different benchmark datasets.
Moreover, two new metrics are proposed to evaluate the trade-off
of compression performance. Experiment results show that BUnit-
Net can achieve comparable classification accuracy while saving
around 80% FLOPs and 73% parameters. That is, stacking basic
units provides a new promising way for network compression.

Index Terms—Model compression, network pruning, compact
networks, convolutional neural networks, generalization.

I. INTRODUCTION

D EEP neural networks (DNNs) have obtained superior per-
formance and become indispensable tools in computer

vision community, such as image classification [1], [2], object
detection [3], [4], and semantic segmentation [5], [6]. However,
the widely-recognized properties of over-parameterization and
redundancy result in huge consumption of memory footprint
and computation cost, which hinder their practical applications.
Considering the limited storage space and computation capacity
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of mobile and edge devices that are often resource-constraint,
it is critically desired to reduce the number of parameters and
floating-point operations (FLOPs) of DNNs for better deploy-
ment [7]. To obtain more efficient models, many techniques
have been explored for compression and acceleration, including
pruning [8], [9], quantization [10], low-rank decomposition [11],
[12], knowledge distillation [13], [14], and compact model de-
sign [15], [16]. The first four methods are usually destructive for
the original model because the parameters or structure will be ad-
justed, while compact model design method is constrictive that
directly create efficient models. Among them, network pruning
has been a mainstream branch in both academia and industry
due to the advantages of saving resources, reducing latency
and addressing privacy concerns, showing broad prospects in
numerous applications [17], [18].

The pruning frameworks aim at eliminating the redundancy
of deep models by removing the components with less impor-
tance. According to the types of removed components, there
are mainly two kinds of pruning methods: unstructured prun-
ing and structured pruning. Unstructured pruning removes the
connections or neurons in weight matrices [8], [19], [20]. A
common standard to determine which weights should be pruned
is magnitude-based pruning that compares the weight amplitude
with a threshold [19]. First, a predefined quality parameter is
multiplied by the standard deviation of weights to calculate the
threshold, and then the weights with lower magnitude than the
threshold will be set to zero. After all layers are pruned, the
model needs to be retrained so that the remaining weights can be
adjusted to compensate for the removed ones. However, this kind
of low-level pruning has the risk of being non-structural that may
hinder the actual acceleration, owing to the irregular memory
access mode. Some special software and hardware such as sparse
CNN accelerators based on ASIC [21], [22] and FPGA [23],
[24] can alleviate this problem, but also brings extra cost to the
deployment of models.

To achieve more practical compression and acceleration, the
well-supported structured pruning methods such as channel
and filter pruning [25], [26], [27] have been explored recently.
Although the structured pruning for convolution kernels and
graphs can obtain hardware-friendly network, they usually need
specific criteria or complex mechanisms to identify the irrelevant
subset of the components for elimination, which will increase
the memory requirement and computation cost. For example, the
reconstruction-based methods try to minimize the reconstruction
error of feature maps based on the pretrained model to achieve
pruning [28], [29], consuming much memory to store the feature
maps of pretrained models. On the other hand, most of the
current methods on compression and acceleration are conducted
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Fig. 1. Construct BUnit-Net via stacking designed basic units. (a) The dense neural network as baseline for comparison; (b) Different basic units with various
input, hidden and output nodes; (c) The compact BUnit-Net with stacked units where the each unit is independent with each other. A compact BUnit-Net contains
stacked layers and normal layers, where the compression will be achieved by stacked layer. The number of input node d in dense network is the summation of the
input nodes of all units that are selected to stack.

on pretrained neural networks. For example, pruning methods
try to remove the unimportant components of pretrained models
and usually require extra iterations to recover the accuracy, while
network quantization achieves compression through quantizing
the parameters such as weights and activations in existing net-
works.

Under the circumstances, it is interesting to ask whether it
is possible to have a human-designed compact networks that
can achieve comparable or even better compression performance
than pruned networks learned through training. Since the current
pruning methods are mainly conducted on pretrained neural net-
works, the performance of compressed model is highly affected
by the quality of the pretrained models, which will give rise to a
restriction if the pretrained models are not well trained. In some
cases, even fewer or no pretrained models are available. Another
concern is that network pruning often involves addition pro-
cesses such as fine-tuning, re-initializing and rewinding, which
may become an obstacle to implement the network because
the generalizability of a given pruning framework in different
architectures is usually unclear. Therefore, simply using a more
efficient architecture would be more effective than pruning a
suboptimal network in many cases [30].

To this end, we therefore propose to directly construct com-
pact neural networks by independently stacking designed basic
units (BUnit-Net) from a new perspective. We first design the
basic unit as a small neural network with at least one hidden
layer, and then combine these basic units following a certain
stacking strategy to construct an entire network. The whole
framework of our proposed method is illustrated in Fig. 1.
In the framework, a group of nodes (i.e., neurons) forms a
basic function unit just like the nervous tissues in human
brain with different functions. Since there is no connection
between each unit due to the independence, our BUnit-Net
simply achieves weight compression without additional mech-
anisms for judging importance of weights. Different from the
sparse and irregular weight tensors generated by unstructured

pruning, the weights of each unit in BUnit-Net are regular
and dense so that they can be easily processed without special
devices. Moreover, the dependence on pretrained model will
also be sidestepped because BUnit-Net is directly trained from
scratch. Besides, BUnit-Net can be built as numerous network
backbones such as convolutional neural networks (CNNs) and
fully-connected networks by designing different basic units,
with strong generalizability. In the experiments, we first ex-
plore the effect of different units through visualizing feature
maps. Then, we conduct extensive experiments on multiple
datasets (i.e., MNIST [31], CIFAR [32], Tiny ImageNet [33]
and ImageNet-2012 [34]) with popular network structures (i.e.,
MLP, VGG [35], ResNet [2], and MobileNetV2 [36]). Experi-
mental results demonstrate the efficacy of BUnit-Net for network
compression on all datasets we have evaluated on. When com-
paring the performance of different compressed methods, we
not only report the commonly-used metrics such as accuracy,
FLOPs and parameters drop ratio, but also propose two new
metrics to evaluate the trade-off between accuracy and model
size (i.e., number of FLOPs and parameters), which are helpful
to select the proper methods under different requirements in
real-applications. As far as we know, this work is the first
attempt to construct compact networks under human-designed
stacking structure, showing great potential on compressing
network.

We summarize our main contributions as follows:
1) We propose BUnit-Net that directly constructs compact

neural networks by combining and stacking well-designed
basic units. It achieves compression through the indepen-
dence of each unit. Using different kinds of basic units,
BUnit-Net can be applied on various models.

2) Different basic units and combining strategy are explored
through several experiments to verify the flexibility and
efficacy of BUnit-Net.

3) We define two novel metrics to measure the trade-off
between accuracy and resource consumption including
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the number of FLOPs and parameters, which are helpful
in decision-making when choosing an appropriate com-
pressed model for different aims.

The rest of this article is organized as follows. Related work
is presented in Section II. Section III introduces the details
of our proposed BUnit-Net. In Section IV, the two proposed
metrics are introduced in detail, and the experiment results
including comparison with different compression methods are
provided. Finally, the limitations of our proposed method and
the conclusions of this paper are given in Section V.

II. RELATED WORK

A. Network Pruning

Network pruning has been widely used to reduce the complex-
ity and computation of CNNs because of its effectiveness and
simplicity. The earliest pruning works date back to 1990 s that
use Hessian approximation to compute the saliency of parame-
ters [37], [38]. And later, researchers continue exploring various
pruning methods. Existing methods can be roughly divided into
unstructured pruning and structured pruning in terms of the types
of network components to be pruned.

Unstructured pruning involves removing weights or neurons
that increases the sparsity of the network by replacing the con-
nections or neurons with zero in the weight matrix. Han et al. [8]
described a three-stage deep compression framework including
network pruning, quantization and Huffman coding, where the
weights were pruned by comparing the magnitude with a preset
threshold. However, in such pruning technique, a weight will
remain zero in the subsequent retraining process once it is re-
moved which may cause large accuracy loss. Guo et al. [39] then
proposed a dynamic network pruning framework, introducing
a recovery operation in order to restore the connection that has
been wrongly pruned. Zhang et al. [40] converted weight pruning
as a constrained non-convex optimization problem.

Structured pruning removes the entire channels or filters,
breaking the limitation that unstructured pruning heavily relies
on technical hardware or software library to achieve compres-
sion and speedup because of the sparse weights. The channel
pruning methods have developed different strategies such as
variational technique [26] and genetic algorithm [41] to choose
the unimportant channels. CGNet [25] identifies the salient
channels and skip the remaining parts with less importance by
the designed squeeze-excitation modules. However, the skipped
regions in CGNet are irregular that require special toolkit to
achieve practical compression. Recent work [42] has introduced
channel independence to measure the importance. Furthermore,
filter-level pruning is also proved to be efficacious. Along this
line, Li et al. [29] first calculated the norms of filters for
evaluation. Later, ThiNet [43] utilizes the features of the next
layer to guide the pruning of the current layer. Further, [44]
introduces group convolution scheme to save storage. Also, He
et al. [27] proposed to rank the importance of convolution filters
based on geometric median to overcome the shortcoming of
norm-based pruning. The sparsity regularization measurements
are explored in [45], [46]. A separate sub-network is introduced
in GaterNet [47] to generate gates for adaptively selecting the

activated filters. AutoPruner [48] automatically identifies the
less important filters in an end-to-end manner. [49] measures the
importance of latent representations to identify the pruned filters.
Yeom et al. [50] combines interpretability and filter pruning
based on layer-wise relevance propagation (LRP) [51].

Since the traditional pruning methods often involve hyper-
parameters that require time-consuming human design, how
to pruning automatically has become a hot issue in recent
years [52], [53]. Besides, Neural Architecture Search (NAS) [54]
has also been combined with pruning in these years such as
Metapruning method [55].

B. Compact Model Design

Compact model design methods focus on changing the basic
operation and redesigning the structure to reduce the complexity
and model size. It is a widely used method to construct a
lightweight network with different cheaper operations. In the
Network in Network (NIN) [56] model, the architecture of
embedded network is developed that uses 1 × 1 convolution to
increase capacity while decreasing computational complexity.
Besides 1 × 1 convolution, SqueezeNet [15] utilizes group
convolution for further speedup. Howard et al. [16] designed
MobileNet using branching strategy, where each branch con-
tained only one channel called depth-wise convolution. The
further work termed MobileNetV2 [36] introduces residual and
linear bottleneck structure. ShuffleNet [57] combines group
convolution and channel shuffle operation that shuffles channels
before the next convolution operation in order to realize in-
formation transmission between multiple groups. Furthermore,
EspNetV2 [58] proposes deep expandable and separable convo-
lution to improve efficiency. Jeon et al. [59] proposed active shift
operation to save memory, and then the sparse shift layer (SSL)
applied in FE-Net [60] eliminates the meaningless shift opera-
tion. In addition to manually design light-weight models, NAS
technique [54] that can construct network automatically has also
attracted attention recently. EfficientNet [61] first utilizes NAS
to search an efficient backbone, and then the backbone is scaled
to deal with different inputs, where the scaling is conducted
on three dimensions (network width, depth and resolution) at
the same time. Based on NAS, [62] and [63] have improved
MobileNetV2 with comparable performance. However, these
methods still require large resource consumption that is difficult
to deploy on practical applications.

C. Other Compression Methods

In addition to pruning and compact models, other methods are
also explored to compress networks and speed up the inference,
including quantization [10], low-rank decomposition [11], [12]
and knowledge distillation (KD) [13], [14]. Network quantiza-
tion method achieves compression by quantizing the weights
or activations to low-bit representations such as binary and
ternary neural networks [64], [65], [66]. In this way, the 32-bit
floating point parameters can be converted to low-bit or even
1 b to reduce resource consumption. Low-rank decomposition
approximates the large weight matrices by the product of sev-
eral low-dimensional matrices to accelerate computation. The
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most common used decomposition techniques include Singular
Value Decomposition (SVD) [11], [67] and Tucker Decompo-
sition [68]. With respect to KD, the whole framework usually
contains two networks, where the knowledge in the larger net-
work (teacher) is utilized to supervise the training of the smaller
one (student). The theoretical basis of KD comes from [69] that
first proposed to train the student through the output of softmax
layer of teacher. Later, the distillation method is continuously
improved from different aspects, such as using intermediate
feature maps [13], [14] or multiple teachers [70], [71].

III. PROPOSED METHOD

A. Preliminaries

Before describing our proposed method, we formally give
some notations and symbols. In a CNN, the weight of a stan-
dard convolutional layer is a four-dimensional tensor W ∈
Rd×d×cin×cout , where d× d is the kernel size of the convolution
filter, cin and cout is the number of input and output channels.
For a three-dimensional input Xin ∈ Rwin×hin×cin with width
win and height hin, the convolutional layer can transform it into
another three-dimensional tensor Xout ∈ Rwout×hout×cout . Let
Conv(·) denote the operations in a convolutional layer including
convolution and activation, the transformation can be formulated
as

Xout = Conv(Xin,W). (1)

For a given convolutional layer, the weight W contains
{d× d× cin × cout} parameters, and the convolution operation
requires {d× d× cin × wout × hout × cout} FLOPs. Because
a CNN model is usually composed by a large number of convo-
lutional layers, the cost of memory and computation will be huge
that makes it a challenge to deploy CNNs on resource-constraint
devices.

B. Basic Function Unit and Stacked Layers

As illustrated in Fig. 1, one of the most important components
of the proposed BUnit-Net is the designed basic unit. We take
CNN as an example to demonstrate our method.

Without loss of generality, we initially design the unit as
a small convolutional neural network with at least one hid-
den layer, where the nodes can be adjusted flexibly. Suppose
the unit contains three layers and the node numbers in each
layer is {c′in, ch, c′out}, respectively. The two weight matrices
in a unit can be represented as Wl ∈ Rd×d×c′in×ch and Wr ∈
Rd×d×ch×c′out . Then, for a given input X′

in ∈ Rwin×hin×c′in ,
the output X′

out ∈ Rwout×hout×c′out of a single unit can be
calculated as

X′
out = Unit(X′

in) = Conv(Conv(X′
in,Wl),Wr). (2)

After designing the basic unit, we can then obtain the whole
convolutional layers by stacking a certain number of units to-
gether. Suppose m units with various c′in are selected to stack
and they are represented as {U1,U2, . . . ,Um}. For the entire
input Xin ∈ Rwin×hin×cin of the whole layer, it first needs to
be split into m pieces, where the input channel c′in of each

piece is the same as the corresponding unit, so that it can be
processed with the unit because the unit only contains c′in input
channels. Note that the total input channels of m units should
be consistent with cin. If these m units have the same input
channel numbers, we can equally splitXin intom = cin

c′in
pieces.

Let {X1,X2, . . . ,Xm} donate m smaller input pieces with the
corresponding m outputs {X1

out,X
2
out, . . . ,X

m
out}. To ensure

that the output of stacked layers can be transformed successfully
into the next layer, these m small outputs are also needed to be
concatenated to keep the dimensions consistent. Thus, the output
of the whole stacked convolutional layers is

Xout_new = Concat(Xin)

= [X1
out,X

2
out, . . . ,X

m
out]

= [Unit(X1),Unit(X2), . . . ,Unit(Xm)], (3)

where the output of each unit is calculated by (2).
By utilizing the simple stacking strategy, we can avoid the

sparse weights generated after unstructured pruning. The weight
tensors in BUnit-Net will remain dense so that it can achieve
compression using general-purpose hardware and software,
without the support of complex judgment criteria as well. The
detailed analysis on memory and computation cost is presented
in Section III-E. In addition to CNN, BUnit-Net is also applica-
ble to other network backbones by designing diverse basic units,
as shown in Fig. 1(b).

C. Network Construction

In BUnit-Net, there are two kinds of convolutional layers
termed as Stacked Layer (solid box) and Normal Layer (dashed
box) as marked in Fig. 1(c). Stacked layer refers to the layers
generated by stacking basic units while normal layer is a sin-
gle standard convolutional layer. Because of the independence
among each unit in stacked layers, it is necessary to add normal
convolution layers between the stacked layers; otherwise, the
entire network will be disconnected resulting in the failure of
feature information transmission. Moreover, the normal layer
between the stacked layers can also help deal with the dimen-
sion matching problem. After obtaining the stacked layers as
described in Section III-B, a whole neural network can be con-
structed using these stacked layers and normal layers alternately.
It is notable that the setting of a normal layer is determined by
the two contiguous stacked layers. For instance, a normal layer
is placed between two stacked layers in Fig. 1(c). Assuming that
the two layers contain m and n units respectively, then the input
nodes (NLin) of the normal layer are the sum of the output nodes
(c′out) of m units on the left, while the output nodes (NLout) is
the total number of n unit input nodes on the right.

It is straightforward to implement BUnit-Net with stacked
layer as classical network architectures like VGG-style and
ResNet-style backbones (style means the similar architecture).
As shown in Fig. 2(a), we can reconfigure the continuous stan-
dard convolutional layers in VGG-style networks by replacing
the first few layers with stacked layers. With respect to ResNet-
style in Fig. 2(b), we can also introduce the residual structure in
BUnit-Net. Furthermore, the constraint on dimensions between
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Fig. 2. Network construction. (a) VGG-style Network; (b) ResNet-style Net-
work. In general, the basic units are designed as three-layer architecture. To
construct a VGG-style BUnit-Net, the most direct way is to use one stacked
layer and one normal layer alternatively. The residual structure can also be
added between the layers to build a ResNet-style BUnit-Net.

different layers can be flexibly solved by adjusting the param-
eters in stacked layer such as convolution stride. In addition to
CNN, BUnit-Net is appropriate for fully-connected networks
like Multilayer Perceptron (MLP) if the unit is designed as a
small network with only fully-connected layers. In terms of the
special convolution operations in recent lightweight models such
as 3× 3 depth-wise and 1× 1 point-wise convolution, the basic
units can also be designed to equip with these operations, demon-
strating the powerful flexibility of the proposed BUnit-Net.

D. Training Process

BUnit-Net involves two parts of weights, one part is the
weights of basic units in stacked layers {Wl, Wr} and the
other is the weights of normal layers Wn. Because each unit
in BUnit-Net is still a neural network, it follows the standard
forward and backward propagation algorithms. Given a set of
data pairs {(x,y)}, the objective function of training BUnit-Net
can be set as

argmin L(Ŷ,y) = argmin
W,b

L(f(C((W,b);x),y)), (4)

whereW = {Wl,Wr,Wn} is all the weights and b is the bias.
The function C(·) contains the Conv operation of normal layers
in (1) and Concat operation in stacked layers as described in (3).
The function f(·) refers to the calculation in other layers such
as fully-connected and pooling layers, and L(·) is a selected
convex loss function.

When designing the basic function unit (generally designed as
three layers), the nodes in each of the layers {c′in, ch, c′out}, and
the number of units to be stacked m need to be preset. Then, the
input channels of m input pieces can be adjusted based on each
c′in. In forward propagation, the output of stacked layers is com-
puted by (3) while the output of normal layers uses the standard
convolution operation in (1). After obtaining the final output
of BUnit-Net in forward propagation, we can get the gradient
by performing backward propagation and update parameters

Algorithm 1: BUnit-Net Construction and Training.
Construction
1: Design several basic function units {U1, U2 . . . Un}.
2: Determine the number of stacked layers J and the

number of units in each stacked layer, that is
M = {m1,m2, . . . ,mJ}.

3: for i in M do
4: Randomly selected i units from {U1, U2 . . . Un} and

stacked them to build the stacked layer. Skip the
selection step if there is only single kind of unit.

5: end for
6: Calculate the input and output nodes of J stacked

layers.
7: Add the normal layer between stacked layers

according to the obtained node numbers.
8: Add other layers such as pooling and fully-connected

layers to construct the entire BUnit-Net.
Training

Input: Training data pairs {Xtrain,ytrain}.
Output: Compact neural networks.

1: Initialize weight and bias in stacked layers and normal
layers.

2: for Iter = 1 to maxIter do
3: Get a minibatch of training data {x,y}.
4: Compute the network output where the output of

stacked layers and normal layers is calculated as (3)
and (1), respectively.

5: Compute the loss L(y, ŷ).
6: Perform standard backward propagation.
7: Update parameters using any popular optimizer.
8: end for

using the popular optimizer such as SGD or ADAM [72]. The
construction and training process of BUnit-Net is summarized
in Algorithm 1.

E. Analysis of Stacked Layers

In order to analyze the compression effect more intuitively,
here we suppose thatm units with the same nodes {c′in, ch, c′out}
are stacked, a group of three convolutional layers will be con-
structed with {mc′in,mch,mc′out} nodes in each layer as in
Fig. 1(a). Since the stacked units are independent, which means
that there is no connection among them, the memory cost of
stacked layers will be

Ms = mWl +mWr = m× d× d× ch × (c′in + c′out).
(5)

If three convolutional layers are fully connected, the two
weight matrices will be Wlf ∈ Rd×d×mcin×mch and Wrf ∈
Rd×d×mch×mcout in which memory cost is

Mn = Wlf +Wrf = m2 × d× d× ch

× (c′in + c′out) = mMs. (6)

Obviously, the number of parameters of stacked convolutional
layers is much lower than the layers with fully connection.
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By this way, our proposed method can effectively reduce the
memory cost to achieve networks compression.

In terms of computation cost, the total FLOPs ofm three-layer
units are

Cs = mFl +mFr = m× d× d× ch × (c′in × woutl

× houtl + woutr × houtr × c′out), (7)

where woutl and woutr are the width of the first and second
layer output, respectively, houtl and houtr are the heights. For
the fully-connected convolutional layers with the same nodes,
the FLOPs are

Cn = d× d×mch × (mc′in × woutl × houtl

+ woutr × houtr ×mc′out) = mCs. (8)

Similarly, the memory and computation cost in other architec-
tures can also be calculated in the same way.

With less parameters and FLOPs, the stacked layers in our
proposed BUnit-Net is also beneficial to save much storage
and computation consumption. Since we also add normal layers
between the stacked layers and different kinds of units may be
used when building network, the compression and acceleration
of the entire BUnit-Net will be smaller than m. The actual
compression performance of BUnit-Net will be reported in our
experiments for comparison.

IV. EXPERIMENTS

To evaluate the performance and efficiency of BUnit-Net, we
initially design several experiments to explore the effect of basic
function units with different structures on both MNIST [31]
and CIFAR-10 [32] datasets. In addition, we then conduct
empirical experiments for image classification tasks on other
three popular datasets, that are CIFAR-100, Tiny ImageNet [33]
and ImageNet-2012 [34]. We first construct BUnit-Net as fully-
connected MLP on MNIST, and then build the representative
CNNs like VGG [35], ResNet [2], and MobileNet [36]. We
mainly compare BUnit-Net with baseline and the following
pruning methods and lightweight models:
� VP [26]: Channel pruning using variational technique.
� DMCP [73]: A mask-based channel pruning method.
� CHIP [42]: Filter pruning through channel independence.
� FPGM [27]: Utilize geometric median to prune filters.
� DualConv [74]: Efficient group convolution for lightweight

models.
� DANL [75]: Neural architecture search method without

additional candidates.

A. Performance Metrics

The most commonly used metrics to assess the performance
of a compressed model are numbers of parameters and FLOPs.
However, when considering the trade-off between compression
and accuracy, it will be unfeasible to evaluate different models.
As we have known, there is no unified indicator that consid-
ers these factors simultaneously so far. Thus, we define two
performance scores termed TCA and TSA. TCA is the com-
putation performance or called the trade-off between accuracy

and FLOPs, while TSA is the storage performance to assess
the trade-off between accuracy and parameters. Assume the
accuracy, FLOPs and parameters of the baseline are {ab, fb, pb}
respectively, and {an, fn, pn} are the corresponding metrics of
the new compressed model, then the two scores are calculated
as

TCA =
e
w1

fb−fn
fb

e
w2

ab−an
ab

, TSA =
e
w1

pb−pn
pb

e
w2

ab−an
ab

, (9)

where w1 and w2 are two scaling factors used to adjust the
importance of different metrics according to specific demands
in different applications. For example, a larger w2 can be chosen
if we care more about accuracy. In turn, if we pay more attention
to computation and storage consumption in some cases, then we
can setw1 to be greater thanw2. By apply the scaling factors, we
can choose the model more flexibly under different constraints.
In fact, the essence of these two scores is the ratio between
the accuracy drop and FLOPs drop (or parameter drop) after
compressing. However, the magnitude gap between accuracy
drop and FLOPs drop (or parameter drop) is usually too large.
For instance, some compression methods are able to reduce
more than 80% FLOPs or parameters while the accuracy loss
can be less than 1%. Therefore, the exponential function here
is introduced to narrow the gap. In other words, the role of
exponentiation is to automatically magnify the subtle differences
on accuracy or diminish the remarkable gap on FLOPs (or pa-
rameter) compared to the baseline, leading to a fair comparison
of different compression methods.

B. Experimental Setting

1) BUnit-Net Construction: We build the diverse kinds of
BUnit-Net under different network architectures to verify the
generalizability. Following the reconfiguration in Fig. 2, we
replace the layers in original VGG and ResNet with our stacked
layers and treat the original networks as baseline. To simplify
the structure, we replace the last fully-connected layers with an
average pooling layer. When constructing the stacked layers in
BUnit-Net, we consider both single and hybrid kinds of units. On
ResNet-style network, we explore different strategies to deploy
stacked layers, such as replacing the intermediate blocks while
remaining the layers in the first and last blocks.

2) Training Strategy: For CIFAR datasets, we train BUnit-
Net for 500 epochs with the initial learning rate of 0.1. BUnit-Net
on MNIST and Tiny-ImageNet is trained 200 epochs. Stochastic
gradient decent (SGD) with momentum 0.9 is used as optimizer
on both CIFAR and Tiny-ImageNet. For ImageNet, we also train
the models for 200 epochs, where the learning rate is 0.01. Adam
with 10−4 weight decay and 0.01 epsilon is applied as optimizer.
For all the dataset, the batch size is 128 and the learning rate
is adjusted with cosine annealing. The cross-entropy loss is
adopted as a criterion for all datasets. In addition, all the training
procedures are warmed up with 10 epochs and applied weight
initialization. As for the network backbones, VGG-style BUnit-
Net is trained on CIFAR and Tiny-ImageNet, while ResNet-style
BUnit-Net is applied on CIFAR and ImageNet. Besides, we also
evaluate the performance of lightweight model MobileNetV2 on
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TABLE I
RESULTS ON MNIST USING SINGLE AND HYBRID KINDS OF UNITS

TABLE II
RESULTS OF TEN INITIAL EXPERIMENTS WITH DIFFERENT COMBINATIONS OF BASIC FUNCTION UNITS

CIFAR. The experiments on CIFAR and ImageNet dataset are
conducted on a NVIDIA Tesla P40 GPU and 2 NVIDIA Tesla
V100S GPUs, respectively.

C. Exploration on Basic Units

1) Hybrid Units versus Single Unit: We first apply hybrid
kinds of units in stacked layers to verify the flexibility of BUnit-
Net as illustrated in Fig. 1(c). Specifically, we design three
different units {U1,U2,U3} with increment on FLOPs and
parameters, where the neurons in {U1,U2,U3} are {‘1-2-1’,
‘1-3-1’, ‘1-4-1’}, respectively. Then, the models are constructed
as the similar architecture of LeNet-5 [76]. The performance of
BUnit-Net using single and hybrid units is reported in Table I.
To avoid randomness, we provide the average accuracy after
running the experiments for five times. We first build the network
separately with three kinds of units. For hybrid units, one of the
three units is randomly selected to stack for each unit position
in stacked layers. To exclude fortuity in random selection, we
perform the evaluation using hybrid units three times. Com-
pared with single unit, hybrid units exhibit the potential to
help improve the accuracy, when maintaining the FLOPs and
parameters at the same compression level. For example, we
adjust the numbers of three units stacked in Hybrid2 to keep
the FLOPs and parameters the same as using single unit U2,
it is observed that model with hybrid units can achieve higher
accuracy. The results on U1 and U2 also indicate the possibility
that units with fewer FLOPs and parameters can still bring better
accuracy. Therefore, these observations motivate us to explore
more effective units and hybrid combinations.

2) Exploration of Different Units: For a BUnit-Net with high
performance, one of the most important components is the
designed basic unit. In this section, we try to explore the effect
and ability of various units on extracting features through a series
of initial experiments. We first design six kinds of units (i.e.,

Fig. 3. Six kinds of units with different input, hidden and output nodes. The
units in toy models are randomly selected from Unit A-F.

Unit A-F) with different numbers of input, hidden and output
node as shown in Fig. 3, and build a toy network by randomly
selecting and stacking them. Specifically, the toy models are
composed of two normal layers and two stacked layers, followed
by a fully-connected layer as the classifier. Each stacked layer
contains 20 units (numbered from Unit_1 to Unit_20) randomly
selected from Unit A-F. In the exploration on basic units, the
models are trained on CIFAR-10 dataset for 200 epochs with
initial learning rate of 0.001. Other setting is the same as the
extensive experiments on CIFAR-10. We conduct ten random
experiments and the amount of different units are recorded in
Table II. We also report the evaluation of toy model including
accuracy, number of FLOPs and parameters for illustration. For
instance, Model No.7 obtain the highest accuracy of 72.21%
with 93.29 k parameters. However, Model No.10 occupies more
FLOPs and parameters while the accuracy is still lower than
No.7. The comparison of Model No.3 and No.4 also reflects this
phenomenon. It implies that more FLOPs and parameters are
helpless to improve the accuracy of the model, or even hurt the
performance, which is also verified in previous experiments. The
results also indicate that the number of different units has a great
impact on the performance of BUnit-Net, which inspires us to
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Fig. 4. Visualization results of each unit in the first stacked layer. Image 1 and Image 2 are the original input images. “Whole_layer” refers to the output feature
map of the entire stacked layer, that is, the concatenation of each unit output. The structures of each unit are also recorded, for example, “Unit_1_F” means that F
is selected as the first unit in this stacked layer.

Fig. 5. Visualization results of the first and last unit output in the first stacked layer. The top line is the feature maps of the first unit (Unit_1) while the bottom
line is the last unit (Unit_20). The structures of each unit in the ten experiments are recorded, for example, “No.1_F” means that the first unit in the first stacked
layer of No.1 Model is F.

find the optimal combinations and adjust the model structured
during training.

For further exploration of the learning ability of different
units, we also visualize the feature maps of each unit in ”Stacked-
layer 1” of the compact network. We first report the visualization
results of Model No.1 using 10 different images that belong to
10 classes of CIFAR-10. According to the results, it is worth
highlighting that some of the units fail to learn useful information
no matter what image is input. Take the class of bird and ship
as examples in Fig. 4, the feature maps of some units such as
Unit_4_A, Unit_7_F, Unit_17_F and Unit_20_D are almost a
single color, meaning that the units miss valuable information
even after training. This promotes us to replace these useless
units with more powerful ones to improve the accuracy.

Although some units fail to extract the important features in
Fig. 4, it is hard to conclude that these units have poor learning
ability because the feature map is also closely related to the
input. For example, Unit_6 has the same structure (i.e., D) as
Unit_20 while it manages to learn more texture orientation and
marginal features. Therefore, the position of unit also plays an

essential role in improving the performance of BUnit-Net. To
evaluate the effect of different units, we visualize the feature
maps of the first and last unit in Stacked-layer 1 whose inputs are
consistent with each other, the results of 10 experiments (Model
No.1-No.10) are shown in Fig. 5. For the single-input units (i.e.,
A-C), it can be noted that the features of an object obtained
by A with single output are more obvious than B and C, such
as No.9_A of Unit_1 and No.6_A of Unit_20. However, for the
two-input units (i.e., D and E), D with two outputs extracts more
useful information than E with only one output in most cases,
like No.3_D of Unit_1 and No.2_D of Unit_20. These findings
illustrate that units with the same number of input and output
nodes are prone to extract valuable features more effectively,
providing a path for designing powerful units in the future.

D. MNIST

On MNIST, we choose the MLP with two hidden lay-
ers as baseline, where the number of nodes in each layer is
“784-500-300-10” as applied in [77]. Note that the MLP only



LAN et al.: COMPACT NEURAL NETWORK VIA STACKING HYBRID UNITS 111

TABLE III
COMPARISON RESULTS ON MNIST USING MLP

contains fully-connected layers, so the basic units also need to be
consistent. Based on the observations in the initial exploration
of basic units, we design the basic units with the same input and
output nodes, that is, cin = cout = 2. The number of hidden
nodes ch is flexible to adjust the compression ratio. In Table III,
we report the performance of BUnit-Net on MNIST using MLP.
In addition to the widely used metrics like accuracy, number
of FLOPs and parameters, we also report the two proposed
scores TSA and TCA (w1 = w2 = 1) for comparison with other
methods. It is showed that we can achieve 97% FLOPS and 96%
parameters reduction compared to baseline model, with only
0.7% accuracy loss. Besides, we can also obtain much higher
TCA and TSA scores compared with the other three pruning
methods. Thus, the results indicate that our proposed BUnit-Net
can work well on MLP.

E. CIFAR-10 and CIFAR-100

On CIFAR dataset, BUnit-Net is built as VGG-16, ResNet-20
and MobileNetV2 backbones. For the two proposed scores,
we set three pairs of scaling factors {w1 = w2 = 1}, {w1 =
1, w2 = 4} and {w1 = 4, w2 = 1} for different focuses. The
theoretical speedup computed by FLOPs ratio is also reported.

1) CIFAR-10: The comparison results on CIFAR-10 are re-
ported in Table IV. For VGG-16, we manage to save 79.87%
FLOPs and 72.90% parameters with only 0.43% accuracy
loss. Besides, BUnit-Net gets the highest TCA scores regard-
less of focusing on accuracy or flops, showing the efficiency
of computational consumption. On ResNet-20, our proposed
BUnit-Net can reduce around half of the FLOPs and param-
eters, where the accuracy loss of 0.58% is still acceptable.
It is encouraging that the two scores are both slightly higher
than other competitors except for when focusing more on ac-
curacy, indicting better utilization of computation and storage
resources. For ResNet-style, we also try to replace the layers
in ResNet-20 with our stacked layers in BUnit-Net apart from
the first and last blocks (represented as the symbol ’r’). Under
this replacing strategy, we can prune 40% FLOPs and 32%
parameters of baseline, where the accuracy gap can be narrowed
to 0.23%.

2) CIFAR-100: In Table V, our BUnit-Net obtain an accuracy
of 72.51% with 73.05 FLOPs and 70.26 parameters reduction
when applying VGG-16. And the TSA scores are also larger
than other state-of-the-art methods under different settings of
scaling factors. Although the accuracy drop is more than 1%, it
can be reduced by adjusting the hidden nodes in basic units or
utilizing the same replacing strategy as ResNet. On ResNet-20,

the advantage of BUnit-Net lies on saving computation resources
because it leads to higher TCA scores.

In terms of latency on CPU and GPU, we conduct a com-
parison study between the proposed method with the base-
line models. The results are presented in Table VII. Although
the actual speedup ratio is lower than the theoretical value
due to the computing and concatenation of each unit output
in Algorithm 1, the proposed method still outperforms the
baseline models with lower latency. This finding implies that
the proposed method can help improve efficiency in real-life
applications.

On the whole, the results on CIFAR dataset verify the flexi-
bility and effectiveness of the proposed BUnit-Net on network
compression, demonstrating that BUnit-Net can produce a more
compressed model with comparable accuracy.

Lightweight Models: In addition to classical CNNs like VGG
and ResNet, we also evaluate BUnit-Net on lightweight models,
such as MobileNetV2, ShuffleNetV2 and EfficientNet, that are
also popular in recent years. In MobileNet, there exist special
1 × 1 point-wise and 3 × 3 depth-wise convolution operations,
where the group number in depth-wise convolution equals to the
number of input channels. Our BUnit-Net can easily deal with
these special operations by adjusting the parameters in basic
units such as the kernel size and group number. The results are
summarized in Tables IV and V. It can be seen that our BUnit-Net
can also be implemented successfully as lightweight models. For
instance, we get an accuracy of 91.58% on CIFAR-10, although
there is a 0.62% loss compared to baseline, it is encouraging
that the FLOPs and parameters can be reduced 38% and 36%
respectively. Moreover, the TCA score is somewhat higher than
other competitors. On CIFAR-100, the accuracy gap between
BUnit-Net and baseline is relatively large. However, it manages
to save 62% FLOPs and 60% parameters, and the performance
scores of TCA and TSA are still larger when setting w1 = 1 and
w2 = 4. With respect to other efficient architectures, we also
apply our stack strategy on ShuffleNetV2 and EfficientNet-B0.
Specifically, we replace parts of the convolutional layers in the
basic block of ShuffleNetV2 and SE modules of EfficientNet-
B0. The results are provided in Table VIII, showing that the
proposed stack strategy can help achieve further compression
with comparable accuracy. Overall, these results demonstrate
that BUnit-Net can work efficiently on lightweight model.

Convergence: On CIFAR dataset, we investigated the conver-
gence of BUnit-Net as illustrated in Fig. 6. Fig. 6(a) and (b)
display the convergence curve on CIFAR-100 using ResNet-18.
It is worth noting that BUnit-Net can almost reach an optimal
status after certain training epochs. Besides, the training process
of BUnit-Net is more stable though the maximum accuracy is a
bit lower than baseline. On CIAFR-10 using VGG-16 in Fig. 6(c)
and (d), our BUnit-Net is trained to be converged in fewer epochs
compared with original VGG network, providing the potential
possibility of acceleration.

F. Tiny-ImageNet and ImageNet

1) Tiny-ImageNet: We apply VGG-19 on Tiny-ImageNet
and the results are recorded in Table VI(a). Compared with
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TABLE IV
COMPARISON RESULTS ON CIFAR-10 UNDER DIFFERENT NETWORK BACKBONES

TABLE V
COMPARISON RESULTS ON CIFAR-100 UNDER DIFFERENT NETWORK BACKBONES

baseline, the accuracy drop of BUnit-Net is relatively large but
it can save more than 63% FLOPs and 54% parameters. As
analysed in the previous section, we can improve the accuracy
by adjusting the hyperparameters to add nodes in stacked layers
or applying a different replacing strategy. Compared with other

methods, it is reasonable to select DMCP [73] with higher TSA
and lower accuracy drop if we pay more attention to accuracy
(i.e., w1 = 1, w2 = 4). However, BUnit-Net can still obtain a
relatively larger score both on TCA and TSA when focusing on
resource consumption (i.e., w1 = 4, w2 = 1).
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TABLE VI
COMPARISON RESULTS ON TINY-IMAGENET AND IMAGENET UNDER VGG-19 AND RESNET-34/50 BACKBONES

Fig. 6. Convergence Curve. (a)/(b): Test Accuracy/Loss on CIFAR-100 using ResNet-18; (c)/(d): Test Accuracy/Loss on CIFAR-10 using VGG-16.

TABLE VII
COMPARISON OF INFERENCE TIME FOR 32×32 IMAGES

2) ImageNet: On large-scale ImageNet, we select ResNet-34
and ResNet-50 as the baseline model and compare the perfor-
mance of our BUnit-Net with state-of-the-art pruning methods
in Table VI(b). On ResNet-34, it is inspiring that our method
achieves 71.51% top-1 accuracy and 35% parameters degra-
dation, with higher TCA and TSA scores than other methods
under most of the settings. Also, we manage to reduce the
amount of FLOPs by around 42% although the TCA score is

TABLE VIII
COMPARISON WITH SHUFFLENET AND EFFICIENTNET

slightly smaller than FPGM [27] when considering accuracy per-
formance. On ResNet-50, our model reduces more parameters
and obtain higher TSA score compared with the other methods
while maintaining the accuracy, resulting in 43.67% reduction in
terms of number of parameters. These results demonstrate that
the proposed BUnit-Net is efficient to reduce computation and
memory consumption on complex tasks, meanwhile maintaining
a comparable accuracy.
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Fig. 7. Trade-off curve between test error and FLOPs drop ratio of BUnit-Net
on (a) CIFAR-10 and (b) CIFAR-100. It can be noted that our method performs
better under larger compression ratio.

G. Ablation Study

Varying FLOPs and Parameters: To study the performance
under different compression ratios, we apply different units to
adjust FLOPs and parameters for compact BUnit-Net under
ResNet-18 backbone on CIFAR-10 and CIFAR-100. The results
in Fig. 7 help comprehensively understand the trade-off of the
proposed BUnit-Net. The four curves reveal the same trend
that BUnit-Net will perform worse as the numbers of FLOPs
and parameters decrease. This trend is also consistent with our
experience that a more compact model will sacrifice more accu-
racy. On CIFAR-100, when we tune the remaining FLOPs from
21% to 30% and corresponding parameters from 10% to 30%,
the compression ratio drops a little but the accuracy increases
drastically from 72.87% to 74.51%. The same observation is
also verified on CIFAR-10. It is reasonable that continuing to
compress will result in a sharp drop in accuracy after the model is
compressed to a certain extent. Thus, to achieve a better trade-off
between compression and accuracy, we can empirically control
the remaining FLOPs and parameters as more than 20% except
for the simple task such as MNIST when applying BUnit-Net
for network compression.

V. CONCLUSION

Limitations: Although our method has been proved to be ef-
fective on compressing networks, there are still some limitations.
First, the basic units are currently designed and stacked ran-
domly. It is therefore desirable to find the optimal structure and
combination which can further enhance the accuracy. Second,
the independence of each unit in the stacked layer may hinder
the communication of information that will also influence the
performance. In the future, we will make more exploration and
combine our method with other techniques such as NAS and
channel shuffle to obtain better performance.

Conclusions: This paper is the first attempt to construct
human-designed compact networks called BUnit-Net, which
combines a number of designed basic function units to generate
stacked layers. Compared with standard dense layers, the
stacked layers contain much fewer parameters and FLOPs
due to the independence of each unit so that BUnit-Net can
achieve compression. We have provided the analysis of the
memory and computation cost of BUnit-Net in detail. Also,
several initial experiments have explored the powerful basic
units. For comparison with different compression methods, we
have introduced two unified indicators to measure the trade-off

between accuracy and compression ratio. The comparative
studies have shown that the proposed BUnit-Net can lead to
better compression with comparable accuracy compared with
the state-of-the-art pruned and lightweight models. This implies
the flexibility and efficacy of BUnit-Net, providing a new
promising way for network compression.
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